Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38556852

ABSTRACT

Since the first introduction from North America more than a century ago, rainbow trout (Oncorhynchus mykiss) have rapidly established self-sustaining populations in major river basins of Patagonia. Many generations later, only the freshwater resident life history is expressed in the Chubut and Negro rivers of northern Argentinian Patagonia, whereas both the resident and anadromous life histories are found in the Santa Cruz River of southern Argentina. Despite previous studies that have tried to identify the sources of these introduced populations, uncertainty still exists. Here we combined data from many single-nucleotide polymorphisms and microsatellite loci in O. mykiss populations from Argentina and North America to evaluate putative source populations, gene flow between Argentinian river basins, and genetic diversity differences between Argentinian and North American populations. We found that populations from northern and southern Patagonia are highly differentiated and have limited gene flow between them. Phylogeographic analysis also confirmed that they have separate origins, with the northern populations most closely related to the domesticated rainbow trout strains that are raised worldwide and the Santa Cruz River populations most closely related to North American populations from California and Oregon that have an anadromous component. In addition, fish with different life histories in the Santa Cruz River were found to constitute a single interbreeding population. No evidence was found of reduced genetic variation in introduced rainbow trout, suggesting multiple contributing sources. In spite of these advances in understanding, significant questions remain regarding the origins and evolution of the introduced O. mykiss in Patagonia.

2.
Science ; 370(6516): 609-613, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33122386

ABSTRACT

Differentiation between ecotypes is usually presumed to be complex and polygenic. Seasonal patterns of life history in salmon are used to categorize them into ecotypes, which are often considered "distinct" animals. Using whole-genome sequencing and tribal fishery sampling of Chinook salmon, we show that a single, small genomic region is nearly perfectly associated with spawning migration timing but not with adiposity or sexual maturity, traits long perceived as central to salmon ecotypes. Distinct migration timing does not prevent interbreeding between ecotypes, which are the result of a simple, ancient polymorphism segregating within a diverse population. Our finding that a complex migratory phenotype results from a single gene region will facilitate conservation and restoration of this iconic fish.


Subject(s)
Animal Migration , Conservation of Natural Resources , Salmon/genetics , Animals , Fisheries , Gene Frequency , Multifactorial Inheritance
3.
Evolution ; 74(7): 1451-1465, 2020 07.
Article in English | MEDLINE | ID: mdl-32490563

ABSTRACT

In temperate climates, the recurring seasonal exigencies of winter represent a fundamental physiological challenge for a wide range of organisms. In response, many temperate insects enter diapause, an alternative developmental program, including developmental arrest, that allows organisms to synchronize their life cycle with seasonal environmental variation. Geographic variation in diapause phenology contributing to local climatic adaptation is well documented. However, few studies have examined how the rapid evolution of a suite of traits expressed across the diapause program may contribute to climatic adaptation on a contemporary timescale. Here, we investigate the evolution of the diapause program over the past 35 years by leveraging a "natural experiment" presented by the recent invasion of the Asian tiger mosquito, Aedes albopictus, across the eastern United States. We sampled populations from two distinct climatic regions separated by 6° of latitude (∼700 km). Using common-garden experiments, we identified regional genetic divergence in diapause-associated cold tolerance, diapause duration, and postdiapause starvation tolerance. We also found regional divergence in nondiapause thermal performance. In contrast, we observed minimal regional divergence in nondiapause larval growth traits and at neutral molecular marker loci. Our results demonstrate rapid evolution of the diapause program and imply strong selection caused by differences in winter conditions.


Subject(s)
Acclimatization/genetics , Aedes/physiology , Biological Evolution , Diapause, Insect/genetics , Animal Distribution , Animals , Appalachian Region , Cold-Shock Response , Larva/growth & development
4.
Mol Ecol Resour ; 18(2): 296-305, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29143457

ABSTRACT

The accelerating rate at which DNA sequence data are now generated by high-throughput sequencing instruments provides both opportunities and challenges for population genetic and ecological investigations of animals and plants. We show here how the common practice of calling genotypes from a single SNP per sequenced region ignores substantial additional information in the phased short-read sequences that are provided by these sequencing instruments. We target sequenced regions with multiple SNPs in kelp rockfish (Sebastes atrovirens) to determine "microhaplotypes" and then call these microhaplotypes as alleles at each locus. We then demonstrate how these multi-allelic marker data from such loci dramatically increase power for relationship inference. The microhaplotype approach decreases false-positive rates by several orders of magnitude, relative to calling bi-allelic SNPs, for two challenging analytical procedures, full-sibling and single parent-offspring pair identification. We also show how the identification of half-sibling pairs requires so much data that physical linkage becomes a consideration, and that most published studies that attempt to do so are dramatically underpowered. The advent of phased short-read DNA sequence data, in conjunction with emerging analytical tools for their analysis, promises to improve efficiency by reducing the number of loci necessary for a particular level of statistical confidence, thereby lowering the cost of data collection and reducing the degree of physical linkage amongst markers used for relationship estimation. Such advances will facilitate collaborative research and management for migratory and other widespread species.


Subject(s)
Computational Biology/methods , Fishes/classification , Fishes/genetics , Genetics, Population/methods , Genotyping Techniques/methods , Haplotypes , Sequence Analysis, DNA/methods , Animals , Polymorphism, Single Nucleotide
5.
Mol Ecol Resour ; 16(1): 277-87, 2016 01.
Article in English | MEDLINE | ID: mdl-25965351

ABSTRACT

Molecular population genetic analyses have become an integral part of ecological investigation and population monitoring for conservation and management. Microsatellites have been the molecular marker of choice for such applications over the last several decades, but single nucleotide polymorphism (SNP) markers are rapidly expanding beyond model organisms. Coho salmon (Oncorhynchus kisutch) is native to the north Pacific Ocean and its tributaries, where it is the focus of intensive fishery and conservation activities. As it is an anadromous species, coho salmon typically migrate across multiple jurisdictional boundaries, complicating management and requiring shared data collection methods. Here, we describe the discovery and validation of a suite of novel SNPs and associated genotyping assays which can be used in the genetic analyses of this species. These assays include 91 that are polymorphic in the species and one that discriminates it from a sister species, Chinook salmon. We demonstrate the utility of these SNPs for population assignment and phylogeographic analyses, and map them against the draft trout genome. The markers constitute a large majority of all SNP markers described for coho salmon and will enable both population- and pedigree-based analyses across the southern part of the species native range.


Subject(s)
Genetics, Population/methods , Oncorhynchus kisutch/genetics , Polymorphism, Single Nucleotide , Animals , Genotype , Oncorhynchus kisutch/classification , Phylogeny , Species Specificity
6.
Mol Ecol Resour ; 11 Suppl 1: 31-49, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21429161

ABSTRACT

Single-nucleotide polymorphisms (SNPs) have several advantages over other genetic markers, including lower mutation and genotyping error rates, ease of inter-laboratory standardization, and the prospect of high-throughput, low-cost genotyping. Nevertheless, their development and use has only recently moved beyond model organisms to groups such as salmonid fishes. Oncorhynchus mykiss is a salmonid native to the North Pacific rim that has now been introduced throughout the world for fisheries and aquaculture. The anadromous form of the species is known as steelhead. Native steelhead populations on the west coast of the United States have declined and many now have protected status. The nonanadromous, or resident, form of the species is termed rainbow, redband or golden trout. Additional life history and morphological variation, and interactions between the forms, make the species challenging to study, monitor and evaluate. Here, we describe the discovery, characterization and assay development for 139 SNP loci in steelhead/rainbow trout. We used EST sequences from existing genomic databases to design primers for 480 genes. Sanger-sequencing products from these genes provided 130 KB of consensus sequence in which variation was surveyed for 22 individuals from steelhead, rainbow and redband trout groups. The resulting TaqMan assays were surveyed in five steelhead populations and three rainbow trout stocks, where they had a mean minor allele frequency of 0.15-0.26 and observed heterozygosity of 0.18-0.35. Mean F(ST) was 0.204. The development of SNPs for O. mykiss will help to provide highly informative genetic tools for individual and stock identification, pedigree reconstruction, phylogeography and ecological investigation.


Subject(s)
Oncorhynchus mykiss/genetics , Polymorphism, Single Nucleotide , Animals , Base Sequence , Consensus Sequence , Databases, Genetic , Expressed Sequence Tags , Gene Frequency , Heterozygote , Rivers , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...